$ \log(n!) = \log(1) + \ldots + \log(n) $.
This sum is $ \int_{1}^{2} \log(2) + \ldots + \int_{n-1}^{n} \log(n) $ $ \geq \int_{1}^{2} \log(t)dt + \ldots + \int_{n-1}^{n} \log(t)dt $ $ = \int_{1}^{n} \log(t) dt = n \log(n) - n +1 $.
Also $ \log(2) + \ldots + \log(n-1) $ $ = \int_{2}^{3} \log(2) + \ldots + \int_{n-1}^{n} \log(n-1) $ $ \leq \int_{2}^{3} \log(t)dt + \ldots + \int_{n-1}^{n} \log(t)dt $ $ \leq \int_{1}^{n} \log(t)dt = n \log(n) - n + 1 $.
So adding $ \log(n) $,
$ \log(1) + \ldots + \log(n) \leq \log(n) + (n \log(n) - n + 1). $
Finally,
$ n \log(n) - n + 1 $ $ \leq \log(1) + \ldots + \log(n)$ $ \leq \log(n) + (n \log(n) - n + 1). $
Taking exponential,
$ n^n e^{-n} e \leq n! \leq n^{n+1} e^{-n} e $.
Edit [Ok its pointless to avoid pictures]