Blog (mostly math)

Differentiation-1

\[{ \underline{\textbf{References}} }\]
  • “Undergraduate Analysis” by Lang.
  • “Foundations of Applied Mathematics, Vol 1” by Humpherys, Jarvis, Evans.
  • “Analysis Vol 2” by Amann, Escher.
  • “Calculus on Normed Vector Spaces” by Coleman.
  • “Differential Calculus” by Cartan.

ROUGH NOTES (!)
Updated: 26/6/24

Continuous linear maps; Differentiation; Differentiation of maps ${ \mathbb{R} ^n \to \mathbb{R} ^m }$

Back to top.
\[{ \underline{\textbf{Continuous linear maps}} }\]

Thm [Continuity of a linear map]: Let ${ E, F }$ be normed vector spaces and ${ \lambda : E \to F }$ a linear map. Now

\[{ \begin{align*} &(\lambda \text{ is continuous}) \\ \iff &\Bigg( \sup _{\lVert u \rVert = 1} \lVert \lambda(u) \rVert = \sup _{v \neq 0} \frac{\lVert \lambda(v) \rVert}{\lVert v \rVert} < \infty \Bigg). \end{align*} }\]

Pf: ${ \underline{\Leftarrow} }$ Say ${ C = \sup _{v \neq 0} \frac{\lVert \lambda (v) \rVert}{\lVert v \rVert} < \infty .}$ Now ${ \lVert \lambda (x) - \lambda(y) \rVert }$ ${ = \lVert \lambda (x - y) \rVert }$ ${ \leq C \lVert x - y \rVert }$ for all ${ x, y \in E.}$ If ${ C = 0 }$ the map is anyways ${ \lambda = 0 ,}$ and if ${ C > 0 }$ the map is uniformly continuous.
${ \underline{\Rightarrow} }$ Say ${ \lambda }$ is continuous. So there is a ${ \delta > 0 }$ such that ${ x \in E, \lVert x \rVert \leq \delta }$ implies ${ \lVert \lambda (x) \rVert < 1 . }$ Now for any ${ x \in E, x \neq 0 }$ the stretch

\[{ \begin{align*} \frac{\lVert \lambda (x) \rVert}{\lVert x \rVert} &= \frac{1}{\delta} \bigg\lVert \lambda \bigg( \underbrace{\frac{x}{\lVert x \rVert} \delta} _{\text{of norm } \delta} \bigg) \bigg\rVert \\ &< \frac{1}{\delta}, \end{align*} }\]

so ${ \sup _{x \neq 0} \frac{\lVert \lambda(x) \rVert}{\lVert x \rVert} < \infty. }$

Eg [A linear map which isn’t continuous]: Consider the space of polynomial functions on ${ [0, 1 ] }$

\[{ V = \lbrace p \in C[0, 1] : p \text{ is polynomial} \rbrace \subseteq C [0, 1] }\]

and the differentiation operator

\[{ D : V \to V, \quad p \mapsto p ^{’} . }\]

Linearity of ${ D }$ is clear. But for every positive integer ${ n }$

\[{ \sup _{v \in V, v \neq 0} \frac{\lVert D(v) \rVert}{\lVert v \rVert} \geq \frac{\lVert D(x ^n) \rVert}{\lVert x ^n \rVert} = n, }\]

so ${ D }$ isn’t continuous.

Obs: Let ${ F }$ be a normed vector space. Any linear map ${ \lambda : \mathbb{R} ^n \to F }$ is continuous.
Pf: For any ${ x \in \mathbb{R} ^n, }$

\[{ \begin{align*} \lVert \lambda (x) \rVert &= \bigg\lVert \sum _{i=1} ^{n} x _i \lambda ( e _i ) \bigg\rVert \\ &\leq \sum _{i=1} ^{n} \vert x _i \vert \lVert \lambda (e _i) \rVert \\ &\leq \lVert x \rVert _{u} \sqrt{\sum _{i=1} ^n \lVert \lambda(e _i) \rVert ^2 } , \end{align*} }\]

so ${ \lambda }$ is uniformly continuous.

Def [Space of continuous linear maps]:
Let ${ E, F }$ be normed vector spaces. The space of continuous linear maps from ${ E }$ to ${ F }$ is written

\[{ L(E, F) := \lbrace \text{continuous linear maps } E \to F \rbrace.}\]

It is a vector space. Such spaces can be given the (submultiplicative) norm

\[{ \lVert \lambda \rVert := \sup _{ x \neq 0} \frac{ \lVert \lambda (x) \rVert}{\lVert x \rVert} < \infty, \quad \text{ for } \lambda \in L(E, F). }\]

Here, if ${ F }$ is complete so is ${ L(E, F) .}$

Thm [Completeness of ${ L(E, F) }$]:
Let ${ E, F }$ be normed vector spaces. Now

\[{ F \text{ is complete} \implies L(E, F) \text{ is complete}. }\]

Pf: Say ${ F }$ is complete. Let ${ (\lambda _n) }$ be a Cauchy sequence in ${ L(E, F). }$ We are to show a ${ \lambda \in L(E, F)}$ for which ${ \lVert \lambda _n - \lambda \rVert \to 0 }$ as ${ n \to \infty . }$
Pick an ${ x \in E, x \neq 0 .}$ The sequence ${ (\lambda _n (x)) }$ is Cauchy, because

\[{ \lVert \lambda _m (x) - \lambda _n (x) \rVert \leq \lVert \lambda _m - \lambda _n \rVert \lVert x \rVert }\]

and ${ (\lambda _n) }$ is Cauchy. As ${ F }$ is complete, the Cauchy sequence ${ (\lambda _n (x) ) }$ converges to a limit, which we can call ${ \lambda (x) .}$ We now have the pointwise limit

\[{ \begin{align*} &\lambda : E \to F , \\ &x \mapsto \lambda(x) := \lim _{n \to \infty} \lambda _n (x) . \end{align*} }\]

It suffices to show

\[{ \text{To show: } \lambda \in L(E,F), \quad \lVert \lambda _n - \lambda \rVert \to 0. }\]

That ${ \lambda }$ is linear is clear:

\[{ \begin{align*} \lambda (\alpha x + \beta y) &= \lim _{n \to \infty} \lambda _n (\alpha x + \beta y) \\ &= \lim _{n \to \infty} (\alpha \lambda _n (x) + \beta \lambda _n (y)) \\ &= \alpha \lambda (x) + \beta \lambda (y). \end{align*} }\]

We are to show ${ \lambda }$ is continuous, that is ${ \sup _{x \neq 0} \frac{\lVert \lambda(x) \rVert}{\lVert x \rVert} < \infty .}$
Let ${ x \in E, x \neq 0 .}$ Note

\[{ \frac{\lVert \lambda _n (x) \rVert}{\lVert x \rVert} \leq \lVert \lambda _n \rVert . }\]

Since ${ (\lambda _n) }$ is bounded by some ${ C > 0 }$ (because it is Cauchy), we have

\[{ \frac{\lVert \lambda _n (x) \rVert}{\lVert x \rVert} \leq C . }\]

Since ${ \lVert \lambda _n (x) \rVert \to \lVert \lambda (x) \rVert }$ (because ${ \vert \lVert \lambda _n (x) \rVert - \lVert \lambda (x) \rVert \vert}$ ${ \leq \lVert \lambda _n (x) - \lambda (x) \rVert \to 0 }$), letting ${ n \to \infty }$ gives

\[{ \frac{\lVert \lambda (x) \rVert}{\lVert x \rVert} \leq C . }\]

So ${ \sup _{x \neq 0} \frac{\lVert \lambda(x) \rVert}{\lVert x \rVert} < \infty }$ as needed.

It is left to show

\[{ \text{To show: } \lVert \lambda _n - \lambda \rVert \to 0 \text{ as } n \to \infty. }\]

Let ${ \epsilon > 0 .}$ Since ${ (\lambda _n) }$ is Cauchy, there is an ${ N }$ such that ${ \lVert \lambda _m - \lambda _n \rVert < \epsilon }$ whenever ${ m , n \geq N .}$ Equivalently

\[{ \frac{\lVert \lambda _m (x) - \lambda _n (x) \rVert}{\lVert x \rVert} < \epsilon \text{ whenever } m, n \geq N \text{ and } x \in E, x \neq 0 . }\]

Fix a choice of ${ x \neq 0, m \geq N }$ and let ${ n \to \infty .}$ This gives

\[{ \frac{\lVert \lambda _m (x) - \lambda (x) \rVert}{\lVert x \rVert} \leq \epsilon \text{ for every choice of } m \geq N, x \neq 0 . }\]

Equivalently

\[{ \lVert \lambda _m - \lambda \rVert \leq \epsilon \text{ for every choice of } m \geq N. }\]

So ${ \lVert \lambda _m - \lambda \rVert \to 0 }$ as ${ m \to \infty, }$ as needed. ${ \blacksquare }$

Completeness of ${ L(E, F) }$ is important when considering integrals of maps ${ f : [a, b] \to L(E, F) .}$

Thm [Continuity of a bilinear map]:

Let ${ E, F, G }$ be normed vector spaces and ${ \lambda : E \times F \to G }$ a bilinear map.

Equip ${ E \times F }$ with say the sup norm ${ \lVert (x, y) \rVert := \max \lbrace \lVert x \rVert, \lVert y \rVert \rbrace }$ or the norm ${ \lVert (x,y) \rVert _{u} := \sqrt{\lVert x \rVert ^2 + \lVert y \rVert ^2 } .}$ (They are equivalent norms as ${ \lVert (x, y) \rVert \leq \lVert (x, y) \rVert _u \leq \sqrt{2} \lVert (x, y) \rVert }$). For concreteness, the sup norm.

Now

\[{ \begin{align*} &(\lambda \text{ is continuous}) \\ \iff &\Bigg(\sup _{\lVert u \rVert = \lVert v \rVert = 1} \lVert \lambda (u, v) \rVert = \sup _{u \neq 0, v \neq 0} \frac{\lVert \lambda (u, v) \rVert}{\lVert u \rVert \lVert v \rVert} < \infty \Bigg) . \end{align*} }\]

Pf: ${ \underline{\Rightarrow} }$ Say ${ \lambda }$ is continuous. So there is a ${ \delta > 0 }$ such that ${ \lVert (x, y) \rVert \leq \delta }$ implies ${ \lVert \lambda (x, y) \rVert < 1 .}$ Now for ${ (x, y) \in E \times F }$ with ${ x \neq 0, y \neq 0 }$ the stretch

\[{ \begin{align*} \frac{\lVert \lambda(x, y) \rVert}{\lVert x \rVert \lVert y \rVert} &= \frac{1}{\delta ^2} \bigg\lVert \lambda \bigg( \underbrace{\delta \frac{x}{\lVert x \rVert}, \delta \frac{y}{\lVert y \rVert}} _{\text{of norm } \delta} \bigg)\bigg\rVert \\ &< \frac{1}{\delta ^2}. \end{align*} }\]

So ${ \sup _{x \neq 0, y \neq 0} \frac{\lVert \lambda (x, y) \rVert}{\lVert x \rVert \lVert y \rVert} < \infty. }$

${ \underline{\Leftarrow} }$ Say ${ C = \sup _{u \neq 0, v \neq 0} \frac{\lVert \lambda (u, v) \rVert}{\lVert u \rVert \lVert v \rVert} < \infty. }$ Now

\[{ \lVert \lambda(u, v) \rVert \leq C \lVert u \rVert \lVert v \rVert \text{ for all } (u, v) \in E \times F, u \neq 0, v \neq 0 .}\]

As ${ \lambda (u , 0) = 0 }$ because ${ \lambda(u, 0+0) = \lambda(u, 0) + \lambda(u, 0) ,}$ and ${ \lambda(0, v) = 0 ,}$ we have

\[{ \lVert \lambda (u, v) \rVert \leq C \lVert u \rVert \lVert v \rVert \text{ for all } (u, v) \in E \times F .}\]

We are to show continuity of ${ \lambda .}$
Say a sequence ${ (x _n , y _n) \to (x, y) }$ in ${ E \times F.}$ We are to show ${ \lambda(x _n, y _n) \to \lambda(x, y) .}$ We see

\[{ \begin{align*} \lVert \lambda(x _n, y _n) - \lambda(x, y) \rVert &\leq \lVert \lambda(x _n, y _n) - \lambda(x _n, y) \rVert + \lVert \lambda(x _n, y) - \lambda(x, y) \rVert \\ &= \lVert \lambda (x _n, y _n - y) \rVert + \lVert \lambda (x _n - x , y) \rVert \\ &\leq C(\lVert x _n \rVert \lVert y _n - y \rVert + \lVert x _n - x \rVert \lVert y \rVert) \to 0, \end{align*} }\]

so ${ \lambda(x _n, y _n) \to \lambda(x, y) }$ as needed. ${ \blacksquare }$

A similar observation holds for multilinear maps.

For normed spaces ${ E _1, \ldots, E _n ; F }$ the set ${ L(E _1, \ldots, E _n ; F) }$ of continuous multilinear maps ${ E _1 \times \ldots \times E _n \to F }$ is a vector space and given the norm

\[{ \lVert \lambda \rVert := \sup \lbrace \lVert \lambda (x _1, \ldots, x _n) \rVert : \lVert x _1 \rVert = \ldots = \lVert x _n \rVert = 1 \rbrace < \infty . }\]

Here, if ${ E _1 = \ldots = E _n = E , }$ we write the space as ${ L ^n (E; F) . }$ For now the focus is on continuous linear maps.

Back to top.
\[{ \underline{\textbf{Differentiation}} }\]

Let ${ E, F }$ be normed spaces, ${ f : U (\subseteq E \text{ open}) \to F , }$ and ${ p \in U .}$ It is useful to have a continuous affine map (i.e. a map of the form ${ a + \lambda(x) }$ with ${ \lambda \in L(E, F) }$) which approximates ${ f }$ well near ${ p .}$

First we need to fix a notion of “approximating well near ${ p }$”.

Consider functions ${ f, g : \mathbb{R} \to \mathbb{R} }$ differentiable at ${ p \in \mathbb{R} .}$ We can say “${ f(x) \approx g(x) }$ near ${ p }$ to first order” if the tangent line approximations at ${ p }$ agree, that is ${ f(p) + f ^{’} (p) (x-p) = g(p) + g ^{’} (p) (x-p) ,}$ that is ${ \lbrace f(p) = g(p), f ^{’} (p) = g ^{’} (p) \rbrace .}$

Now consider functions ${ f, g : \mathbb{R} ^n \to \mathbb{R} }$ and a point ${ p \in \mathbb{R} ^n .}$ A first attempt is to say “${ f(x) \approx g(x) }$ near ${ p }$ to first order” if for every unit vector ${ e }$ the slices

\[{ t \mapsto f(p + te), \quad t \mapsto g(p + te) }\]

agree approximately near ${ 0 }$ in the above ${1}$D sense. (Say all directional derivatives ${ \frac{d}{dt} \big\vert _{t=0} f(p + te), }$ ${ \frac{d}{dt} \big\vert _{t=0} g(p + te) }$ exist). The condition is equivalent to asking

\[{ \left\lbrace \begin{align*} &f(p) = g(p), \text{ and} \\ &\frac{d}{dt} \bigg\vert _{t=0} f(p+te) = \frac{d}{dt} \bigg\vert _{t=0} g(p+te) \text{ for every unit vector } e \in \mathbb{R} ^n \end{align*} \right\rbrace }\]

that is

\[{ \left\lbrace \begin{align*} &f(p) = g(p), \text{ and} \\ &\lim _{t \to 0} \frac{f(p+te) - g(p+te)}{t} = 0 \text{ for every unit vector } e \in \mathbb{R} ^n \end{align*} \right\rbrace .}\]

A sort of strengthening of this gives the actual definition.

Def [Approximation to first order]: Let ${ E, F }$ be normed spaces, ${ f, g : U (\subseteq E \text{ open}) \to F ,}$ and ${ p \in U .}$ We say

\[{ f(x) \approx g(x) \text{ near } p \text{ to first order} }\]

if, for ${ h }$ in a neighbourhood of ${ 0 ,}$ we have

\[{ \left\lbrace \begin{align*} &f(p) = g(p), \text{ and} \\ &\text{the error } \varepsilon(h) := f(p+h) - g(p+h) \text{ satisfies } \lim _{h \to 0} \frac{\varepsilon(h)}{\lVert h \rVert} = 0 \end{align*} \right\rbrace }\]

that is

\[{ \left\lbrace \begin{align*} &f(p+h) = g(p+h) + \varepsilon(h) \text{ with } \\ &\varepsilon(0) = 0 \text{ and } \lim _{h \to 0} \frac{\varepsilon(h)}{\lVert h \rVert} = 0 \end{align*} \right\rbrace }\]

that is

\[{ \left\lbrace \begin{align*} &f(p+h) = g(p+h) + \lVert h \rVert \varphi(h) \text{ with } \\ &\varphi(0) = 0 \text{ and } \varphi \text{ continuous at } 0 \end{align*} \right\rbrace . }\]

Let ${ E, F }$ be normed spaces, ${ f : U (\subseteq E \text{ open}) \to F ,}$ and ${ p \in U .}$ Any continuous affine map ${ a + \lambda(x) }$ such that “${ f(x) \approx a + \lambda(x) }$ near ${ p }$ to first order” must have ${ f(p) = a + \lambda(p) ,}$ and so must look like ${ f(p) + \lambda(x - p) }$ with ${ \lambda \in L(E, F) .}$

Def [Derivative]: Let ${ E, F }$ be normed spaces, ${ f : U (\subseteq E \text{ open}) \to F },$ and ${ p \in U .}$
A derivative of ${ f }$ at ${ p \in U }$ (if it exists) is a continuous linear map

\[{ Df(p) = f ^{’} (p) \in L(E, F) }\]

such that

\[{ \, ^{``} f(x) \approx f(p) + f ^{’} (p) (x - p) \text{ near } p \text{ to first order} ^{"} }\]

that is (for ${ h }$ in a neighbourhood of ${ 0 }$)

\[{ \left\lbrace \begin{align*} &f(p+h) = f(p) + f ^{’} (p) h + \lVert h \rVert \varphi(h) \text{ with} \\ &\varphi(0) = 0 \text{ and } \varphi \text{ continuous at } 0 \end{align*} \right\rbrace. }\]

Obs: In the above setup, if an ${ f ^{’} (p) }$ exists, taking limit of ${ f(p+h) }$ as ${ h \neq 0, h \to 0 }$ (using continuity of ${ f ^{’} (p) }$ and ${ \varphi }$ at ${ 0 }$) gives ${ \lim _{h \to 0} f(p+h) = f(p) .}$ So differentiability at ${ p }$ implies continuity at ${ p .}$

Thm [Uniqueness of Derivative]:
Let ${ E, F }$ be normed spaces, ${ f : U (\subseteq E \text{ open}) \to F , }$ and ${ p \in U .}$ Say ${ \lambda _1, \lambda _2 \in L(E, F) }$ are both derivatives of ${ f }$ at ${ p .}$ Then ${ \lambda _1 = \lambda _2 }$.

Pf: We have (implicitly for ${ h }$ in a neighbourhood of ${ 0 }$)

\[{ \begin{align*} f(p+h) &= f(p) + \lambda _1 (h) + \lVert h \rVert \varphi _1 (h) \\ &= f(p) + \lambda _2 (h) + \lVert h \rVert \varphi _2 (h) \end{align*} }\]

with ${ \varphi _1 (0) = \varphi _2 (0) = 0 }$ and ${ \varphi _1, \varphi _2 }$ continuous at ${ 0 .}$

Let ${ v \in E , v \neq 0 .}$ We are to show

\[{ \text{To show: } \lambda _1 (v) = \lambda _2 (v) .}\]

For ${ t }$ in a neighbourhood of ${ 0 ,}$

\[{ f(p) + \lambda _1 (tv) + \lVert tv \rVert \varphi _1 (tv) = f(p) + \lambda _2 (tv) + \lVert tv \rVert \varphi _2 (tv) }\]

so

\[{ \vert t \vert \lVert \lambda _1 (v) - \lambda _2 (v) \rVert = \vert t \vert \lVert v \rVert \lVert \varphi _1 (tv) - \varphi _2 (tv) \rVert . }\]

Dividing by ${ \vert t \vert \neq 0 }$ and letting ${ \vert t \vert \to 0, }$ we see

\[{ \lVert \lambda _1 (v) - \lambda _2 (v) \rVert = 0 }\]

as needed.

Thm [Derivative of linear combination]:
Let ${ E, F }$ be normed spaces, ${ f , g : U (\subseteq E \text{ open}) \to F ,}$ and ${ x \in U .}$ If ${ f, g }$ are differentiable at ${ x }$ and ${ c \in \mathbb{R}, }$ then so is ${ f + cg }$ with

\[{ D(f + cg) (x) = Df (x) + c Dg(x) . }\]

Pf: We have (for ${ h }$ in a neighbourhood of ${ 0 }$)

\[{ \begin{align*} &f(x + h) = f(x) + Df(x) h + \lVert h \rVert \varphi _f (h), \\ &g(x+h) = g(x) + Dg(x) h + \lVert h \rVert \varphi _g (h) \end{align*} }\]

with ${ \varphi _f (0) = \varphi _g (0) = 0 }$ and ${ \varphi _f, \varphi _g }$ continuous at ${ 0 .}$

Taking linear combination,

\[{ \begin{align*} (f + cg)(x+h) = \, &(f + cg)(x) + \underbrace{(Df(x) + c Dg(x))} _{\text{in } L(E, F)} h \\ &+ \lVert h \rVert (\varphi _f (h) + c \varphi _g (h)) \end{align*} }\]

with ${ (\varphi _f + c \varphi _g) (0) = 0 }$ and ${ ( \varphi _f + c \varphi _g) }$ continuous at ${ 0 .}$

So ${ D(f + cg) (x) = Df(x) + c Dg(x) .}$

Thm [Derivative of product]:
Say ${ E, F _1, F _2, G }$ are normed spaces, and ${ \bullet : F _1 \times F _2 \to G, }$ ${ (u, v) \mapsto u \bullet v }$ is a continuous bilinear map.
If ${ f : U (\subseteq E \text{ open}) \to F _1 }$ and ${ g : U (\subseteq E \text{ open}) \to F _2 }$ are differentiable at ${ x \in U ,}$ then so is ${ f \bullet g : U (\subseteq E \text{ open}) \to G, }$ ${ t \mapsto f(t) \bullet g(t) }$ with

\[{ D (f \bullet g) (x) = Df(x) \bullet g(x) + f(x) \bullet Dg(x) . }\]

Pf: For ${ h }$ in a neighbourhood of ${ 0 ,}$

\[{ \begin{align*} &f(x+h) = f(x) + Df(x) h + \lVert h \rVert \varphi _f (h), \\ &g(x+h) = g(x) + Dg(x) h + \lVert h \rVert \varphi _g (h) \end{align*} }\]

with ${ \varphi _f (0) = \varphi _g (0) = 0 }$ and ${ \varphi _f, \varphi _g }$ continuous at ${ 0 .}$

Now

\[{ \begin{align*} &f(x+h) \bullet g(x+h) \\ = &(f(x) + Df(x) h + \lVert h \rVert \varphi _f (h)) \bullet (g(x) + Dg(x)h + \lVert h \rVert \varphi _g (h)) \\ = &(f(x) + Df(x) h ) \bullet (g(x) + Dg(x) h) \\ &+ \underbrace{\lVert h \rVert \left[ (f(x) + Df(x) h) \bullet \varphi _g (h) + \varphi _f (h) \bullet (g(x) + Dg(x)h) \right] + \lVert h \rVert ^2 \varphi _f (h) \bullet \varphi _g (h)} _{=: \, \varepsilon _1 (h)} \\ = &f(x) \bullet g(x) + (Df(x)h \bullet g(x) + f(x) \bullet Dg(x)h) + \underbrace{Df(x) h \bullet Dg(x) h + \varepsilon _1 (h)} _{=: \, \varepsilon (h)} . \end{align*} }\]

We are to show the error ${ \varepsilon(h) }$ satisfies ${ \varepsilon(0) = 0 }$ and ${ \lim _{h \to 0} \frac{\varepsilon(h)}{\lVert h \rVert} = 0 .}$ To show the latter, one shows each term ${ t(h) }$ of ${ \varepsilon(h) }$ satisfies ${ \frac{t(h) }{\lVert h \rVert} \to 0 }$ as ${ h \to 0 .}$ For example,

\[{ \begin{align*} \frac{\lVert Df(x)h \bullet Dg(x)h \rVert}{\lVert h \rVert} &\leq \frac{\lVert \bullet \rVert \lVert Df(x) h \rVert \lVert Dg(x) h \rVert}{\lVert h \rVert} \\ &\leq \frac{\lVert \bullet \rVert \lVert Df(x) \rVert \lVert Dg(x) \rVert \lVert h \rVert ^2}{\lVert h \rVert} \to 0 \text{ as } h \to 0 \end{align*} }\]

and

\[{ \begin{align*} \frac{\left\lVert \lVert h \rVert (f(x) + Df(x) \, h) \bullet \varphi _g (h) \right\rVert}{\lVert h \rVert} &\leq \lVert \bullet \rVert \lVert f(x) + Df (x) \, h \rVert \lVert \varphi _g (h) \rVert \to 0 \text{ as } h \to 0 . \end{align*} }\]

Now it is left to show

\[{ h \mapsto Df(x)h \bullet g(x) + f(x) \bullet Dg(x)h }\]

is in ${ L(E, G) .}$ Denote the maps

\[{ h \mapsto Df(x)h \bullet g(x) , \quad h \mapsto f(x) \bullet Dg(x)h }\]

by ${ Df(x) \bullet g(x) }$ and ${ f(x) \bullet Dg(x) }$ respectively. They are in ${ L(E, G) }$ because for example

\[{ \begin{align*} \frac{\lVert Df(x)h \bullet g(x)\rVert}{\lVert h \rVert} &\leq \frac{\lVert \bullet \rVert \lVert Df(x) h \rVert \lVert g(x) \rVert }{\lVert h \rVert} \\ &\leq \lVert \bullet \rVert \lVert Df(x) \rVert \lVert g(x) \rVert . \end{align*} }\]

Finally

\[{ D(f \bullet g) (x) = Df(x) \bullet g(x) + f(x) \bullet Dg(x) . }\]

Thm [Derivative of composition]:
Let ${ E, F , G }$ be normed spaces. Consider maps

\[{U (\subseteq E \text{ open}) \overset{f}{\longrightarrow} V (\subseteq F \text{ open}) \overset{g}{\longrightarrow} G , }\]

and a point ${ x \in U .}$ If ${ f }$ is differentiable at ${ x }$ and ${ g }$ is differentiable at ${ f(x) ,}$ then ${ g \circ f }$ is differentiable at ${ x }$ with

\[{ D(g \circ f)(x) = D(g) (f(x)) \circ D(f)(x) . }\]

Intuitively

\[{ \begin{align*} g(f(x + h)) \approx &\, g(f(x) + Df(x) \, h) \\ \approx &\, g(f(x)) + Dg (f(x)) \, Df(x) h . \end{align*} }\]

Pf: By differentiability of ${ f }$ at ${ x , }$ there is an ${ \eta _1 > 0 }$ such that

\[{ \begin{align*} &\text{For } \lVert h \rVert < \eta _1: \\ &f(x + h) = f(x) + D(f)(x) \, h + \lVert h \rVert \varphi _f (h) \\ &\text{with } \varphi _f (0) = 0 \text{ and } \varphi _f \text{ continuous at } 0. \end{align*} }\]

By differentiability of ${ g }$ at ${ f(x), }$ there is an ${ \eta _2 > 0 }$ such that

\[{ \begin{align*} &\text{For } \lVert k \rVert < \eta _2: \\ &g( f(x) + k) = g(f(x)) + D(g)(f(x)) \, k + \lVert k \rVert \varphi _g (k) \\ &\text{with } \varphi _g (0) = 0 \text{ and } \varphi _g \text{ continuous at } 0. \end{align*} }\]

Using these,

\[{ \begin{align*} &(g \circ f)(x + h) \\ = &\, g( f(x+h) ) \\ {\color{red}{=}} &\, g \bigg(f(x) + \underbrace{\boxed{D(f)(x) \, h + \lVert h \rVert \varphi _f (h)}} _{ \Box(h)} \bigg) \\ {\color{blue}{=}} &\, g(f(x)) + D(g)(f(x)) \, \Box (h) + \lVert \Box (h) \rVert \varphi _g \left( \Box(h) \right) \end{align*} }\]

whenever ${ {\color{red}{\lVert h \rVert < \eta _1}} }$ and ${ {\color{blue}{ \left\lVert \Box (h) \right\rVert} < \eta _2 } . }$

Since

\[{ \Box (h) := D(f)(x) \, h + \lVert h \rVert \varphi _f (h) }\]

is continuous at ${ 0, }$ we can pick a small enough ${ \eta > 0 }$ such that for ${ \lVert h \rVert < \eta, }$ both ${ \lVert h \rVert < \eta _1 }$ and ${ \left\lVert \Box (h) \right\rVert < \eta _2 }$ hold.

Now for ${ \lVert h \rVert < \eta ,}$

\[{ \begin{align*} &(g \circ f)(x+h) \\ = &g(f(x)) + D(g)(f(x)) \, \Box (h) + \lVert \Box (h) \rVert \varphi _g \left( \Box(h) \right) \\ = &(g \circ f)(x) + \big[ D(g)(f(x)) \circ D(f)(x) \big] \, h \\ &+ \underbrace{\lVert h \rVert D(g) (f(x)) \, \varphi _f (h) + \lVert \Box (h) \rVert \varphi _g (\Box (h))} _{=: \, \varepsilon(h) } . \end{align*} }\]

Note ${ \varepsilon(h) = 0 }$ and ${ \lim _{h \to 0} \frac{\varepsilon(h)}{\lVert h \rVert} = 0 .}$ The latter is because both

\[{ \begin{align*} \frac{\left\lVert \lVert h \rVert D(g) (f(x)) \, \varphi _f (h) \right\rVert }{\lVert h \rVert} &\leq \lVert D(g) (f(x)) \rVert \lVert \varphi _f (h) \rVert \to 0 \text{ as } h \to 0 \end{align*} }\]

and

\[{ \begin{align*} \frac{\left\lVert \lVert \Box (h) \rVert \varphi _g (\Box (h)) \right\rVert}{\lVert h \rVert} \leq &\frac{1}{\lVert h \rVert} \left( \lVert D(f)(x) \rVert \lVert h \rVert + \lVert h \rVert \lVert \varphi _f (h) \rVert\right) \, \lVert \varphi _g (\Box (h)) \rVert \\ &\to 0 \text{ as } h \to 0. \end{align*} }\]

It is left to show ${ D(g)(f(x)) \circ D(f)(x) \in L(E, G). }$ This is true because

\[{ \begin{align*} \frac{\lVert\left[ D(g)(f(x)) \circ D(f)(x) \right] h \rVert}{\lVert h \rVert} &\leq \frac{\lVert D(g)(f(x)) \rVert \lVert D(f)(x) h \rVert}{\lVert h \rVert} \\ &\leq \lVert D(g) (f(x)) \rVert \lVert D(f)(x) \rVert. \end{align*} }\]

Finally

\[{ D(g \circ f)(x) = D(g) (f(x)) \circ D(f)(x). }\]

Derivative of ${ g \circ f }$ at ${ x }$ is derivative of ${ g }$ at ${ f(x) }$ composed with derivative of ${ f }$ at ${ x .}$

Eg: Consider ${ C[0, 1], }$ and the map

\[{ Q : C[0, 1] \to \mathbb{R} , }\] \[{ Q(f) = \int _0 ^1 t f ^{3} (t) \, dt . }\]

We can study if ${ Q }$ is differentiable at ${ \varphi \in C[0, 1] .}$

\[{ \begin{align*} Q(\varphi + h) - Q(\varphi) = &\int _0 ^1 t \, (h ^{3} (t) + 3 \varphi ^{2} (t) h(t) + 3 \varphi(t) h ^{2} (t) ) \, dt \\ = &\underbrace{\int _0 ^{1} 3t \varphi ^2 (t) h(t) \, dt} _{=: \, L(h)} + \underbrace{\int _{0} ^{1} (t h ^{3} (t) + 3 t \varphi(t) h ^{2} (t) ) \, dt} _{=: \, \varepsilon(h)} . \end{align*} }\]

Note ${ L(h) }$ is continuous linear: Linearity is clear. For ${ h _1, h _2 \in C[0, 1], }$

\[{ \begin{align*} &\vert L(h _1) - L(h _2) \vert \\ = &\left\vert \int _0 ^1 3 t \varphi ^2 (t) (h _1 (t) - h _2 (t)) \, dt \right\vert \\ \leq &\sup _{t \in [0, 1]} \vert 3 t \varphi ^2 (t) ( h _1 (t) - h _2 (t)) \vert \\ \leq &\left(\sup _{t \in [0, 1]} \vert 3t \varphi ^2 (t) \vert \right) \lVert h _1 - h _2 \rVert \end{align*} }\]

so ${ L }$ is uniformly continuous.

It is left to show the error ${ \varepsilon(h) }$ satisfies ${ \varepsilon(0) = 0 }$ and ${ \lim _{\lVert h \rVert \to 0} \frac{\varepsilon(h)}{\lVert h \rVert} = 0 .}$ Indeed for ${ h \neq 0 }$

\[{ \begin{align*} \frac{\vert \varepsilon(h) \vert}{\lVert h \rVert} \leq &\frac{\lVert h \rVert ^3 + 3 \lVert \varphi \rVert \lVert h \rVert ^2 }{\lVert h \rVert} \to 0 \end{align*} }\]

as ${ \lVert h \rVert \to 0 .}$

So the derivative of ${ Q }$ at ${ \varphi }$ is

\[{ DQ (\varphi) : C[0, 1] \to \mathbb{R}, }\] \[{ DQ(\varphi) \, h = \int _0 ^1 3 t \varphi ^2 (t) h(t) \, dt . }\]
Back to top.
\[{ \underline{\textbf{Differentiation of maps } \mathbb{R} ^n \to \mathbb{R} ^m} }\]

Def [Partial derivatives]: Let ${ f : U (\subseteq \mathbb{R} ^n \text{ open}) \to \mathbb{R} }$ and ${ x \in U .}$ The partial derivative of ${ f }$ at ${ x }$ in the direction ${ e _i }$ is

\[{ D _i f (x) = \frac{\partial f}{\partial x _i} (x) := \lim _{h \to 0} \frac{f(x + he _i) - f(x)}{h}. }\]

Thm [Derivative and partials, ${ \mathbb{R} ^n \to \mathbb{R} }$ case]:

Consider ${ f : U (\subseteq \mathbb{R} ^n \text{ open}) \to \mathbb{R} }$ and ${ x \in U .}$

i) Say ${ f }$ is differentiable at ${ x .}$ Then all the partial derivatives ${ D _i f (x) }$ exist, and the derivative looks like

\[{ Df (x) = (D _1 f (x), \ldots , D _n f (x) ) .}\]

ii) Conversely, say all the partial derivatives ${ D _i f }$ exist in a neighbourhood of ${ x ,}$ and are continuous at ${ x }$. Then ${ f }$ is differentiable at ${ x }$ (and as above, the derivative looks like ${ Df (x) = (D _1 f (x), \ldots, D _n f (x)) }$).

Pf: i) Say ${ f }$ is differentiable at ${ x , }$ that is ${ Df (x) }$ exists. Now (implicitly for ${ h }$ in a neighbourhood of ${ 0 }$)

\[{ \begin{align*} &f(x+h) = f(x) + Df(x) h + \lVert h \rVert \varphi(h) \text{ with } \\ &\varphi(0) = 0 \text{ and } \varphi \text{ continuous at } 0 . \end{align*} }\]

Putting ${ h = t e _i }$ we see (for ${ t }$ in a neighbourhood of ${ 0 }$)

\[{ f(x + te _i) = f(x) + Df(x) te _i + \vert t \vert \varphi(te _i). }\]

Dividing by ${ t \neq 0 }$ we see

\[{ \left\vert \frac{f(x + t e _i) - f(x)}{t} - Df (x) e _i \right\vert = \underbrace{\vert \varphi (t e _i) \vert} _{\to 0 \text{ as } t \to 0} , }\]

giving that

\[{ \text{Each } D _i f (x) \text{ exists, and is } D _i f (x) = Df (x) e _i. }\]

Now ${ Df (x) }$ looks like

\[{ \begin{align*} Df(x) &= (Df(x) \, e _1, \ldots, Df(x) \, e _n) \\ &= (D _1 f (x), \ldots, D _n f (x)), \end{align*} }\]

as needed.

ii) Say all the partial derivatives ${ D _i f }$ exist in a neighbourhood of ${ x },$ and are continuous at ${ x .}$ We will show that ${ (D _1 f (x), \ldots, D _n f (x)) }$ works as the derivative at ${ x .}$

Using 1D mean value theorem repeatedly, (for ${ h }$ in a neighbourhood of ${ 0 }$)

\[{ \begin{align*} &f(x _1 + h _1, \ldots, x _n + h _n) \\ = &f(x _1 , x _2 + h _2, \ldots, x _n + h _n) + D _1 f (x _1 + \theta _1 h _1, x _2 + h _2, \ldots, x _n + h _n) \, h _1 \\ = &f(x _1, x _2, x _3 + h _3, \ldots, x _n + h _n) + D _2 f (x _1 , x _2 + \theta _2 h _2, x _3 + h _3, \ldots, x _n + h _n) \, h _2 \\ &+ D _1 f (x _1 + \theta _1 h _1, x _2 + h _2, \ldots, x _n + h _n) \, h _1 \\ \vdots \\ = &f(x) + \sum _{i=1} ^{n} D _i f (x _1 , \ldots, x _{i-1}, x _i + \theta _i h _i, x _{i+1} + h _{i+1}, \ldots, x _n + h _n) \, h _i \end{align*} }\]

with each ${ \theta _i = \theta _i ( h) \in (0, 1) .}$

By continuity of each ${ D _i f }$ at ${ x, }$

\[{ \begin{align*} &D _i f (x _1 , \ldots, x _{i-1}, x _i + \theta _i h _i, x _{i+1} + h _{i+1}, \ldots, x _n + h _n) = D _i f (x) + \psi _i (h) \\ &\text{with } \psi _i (h) \text{ continuous at 0} . \end{align*} }\]

Combining both,

\[{ \begin{align*} &f(x+h) \\ = &f(x) + \sum _{i=1} ^{n} D _i f (x _1 , \ldots, x _{i-1}, x _i + \theta _i h _i, x _{i+1} + h _{i+1}, \ldots, x _n + h _n) \, h _i \\ = &f(x) + \sum _{i=1} ^{n} \left( D _i f (x) + \psi _i (h) \right) \, h _i \\ = &f(x) + \underbrace{\sum _{i=1} ^{n} D _i f (x) \, h _i} _{(D _1 f (x) \, , \, \ldots \, , \, D _n f (x)) \, h} + \underbrace{\sum _{i=1} ^{n} \psi _i (h) \, h _i } _{\varepsilon(h)} . \end{align*} }\]

The error ${ \varepsilon(h) = \sum _{i=1} ^{n} \psi _i (h) \, h _i }$ satisfies ${ \varepsilon(0) = 0 }$ and

\[{ \begin{align*} \frac{\vert \varepsilon(h) \vert}{\lVert h \rVert} &\leq \frac{\sum _{i=1} ^{n} \vert h _i \vert \vert \psi _i (h) \vert}{\lVert h \rVert} \\ &\leq \frac{\lVert h \rVert \sqrt{\sum _{i=1} ^{n} \vert \psi _i (h) \vert ^2}}{\lVert h \rVert } \\ &= \left(\sum _{i=1} ^n \vert \psi _i (h) \vert ^2 \right) ^{\frac{1}{2}} \to 0 \text{ as } h \to 0 . \end{align*} }\]

So

\[{ (D _1 f (x), \ldots, D _n f(x)) }\]

works as the derivative of ${ f }$ at ${ x .}$ ${ \blacksquare }$

Thm [Derivative and partials, ${ \mathbb{R} ^n \to \mathbb{R} ^m }$ case]:

Consider ${ f : U (\subseteq \mathbb{R} ^n \text{ open}) \to \mathbb{R} ^m ,}$ ${ f = (f _1, \ldots, f _m) ^T }$ and ${ x \in U .}$

i) Say ${ f }$ is differentiable at ${ x .}$ Then all the partial derivatives ${ D _j f _i (x) }$ exist, and the derivative looks like

\[{ Df(x) = \begin{pmatrix} D _1 f _1 (x) &\cdots &D _n f _1 (x) \\ \vdots &\ddots &\vdots \\ D _1 f _m (x) &\cdots &D _n f _m (x) \end{pmatrix} . }\]

ii) Conversely, say all the partial derivatives ${ D _j f _i }$ exist in a neighbourhood of ${ x },$ and are continuous at ${ x .}$ Then ${ f }$ is differentiable at ${ x }$ (and as above, the derivative is the ${ m \times n }$ matrix with entries ${ (Df (x)) _{i, j} = D _j f _i (x) }$).

Pf: i) Say ${ f }$ is differentiable at ${ x ,}$ that is ${ Df (x) }$ exists.
Now (implicitly for ${ h }$ in a neighbourhood of ${ 0 }$)

\[{ \begin{align*} &f(x+h) = f(x) + D f (x) h + \lVert h \rVert \varphi(h) \text{ with } \\ &\varphi(0) = 0 \text{ and } \varphi \text{ continuous at } 0 . \end{align*} }\]

Looking at the ${ i ^{\text{th}} }$ coordinate of above equation,

\[{ \begin{align*} &f _i (x + h) = f _i (x) + (i ^{\text{th}} \text{ row of } Df(x)) h + \lVert h \rVert \varphi _i (h) \\ &\text{with } \varphi _i (0) = 0 \text{ and } \varphi _i \text{ continuous at } 0 . \end{align*} }\]

So ${ f _i }$ is differentiable at ${ x }$ with derivative

\[{ D f _i (x) = (i ^{\text{th}} \text{ row of } Df (x)) .}\]

Applying the previous result to ${ f _i },$ we see all partials ${ D _j f _i (x) }$ exist and ${ D f _i (x) }$ looks like

\[{ (D _1 f _i (x), \ldots, D _n f _i (x)) = Df _i (x) = (i ^{\text{th}} \text{ row of } Df (x)) , }\]

as needed.

ii) Say all the partial derivatives ${ D _j f _i }$ exist in a neighbourhood of ${ x }$ and are continuous at ${ x . }$

Applying the previous result to ${ f _i ,}$ we see ${ (D _1 f _i (x), \ldots, D _n f _i (x)) }$ works as the derivative of ${ f _i }$ at ${ x }$ that is

\[{ \begin{align*} &f _i (x + h) = f _i (x) + (D _1 f _i (x), \ldots, D _n f _i (x)) \, h + \lVert h \rVert \varphi _i (h) \\ &\text{with } \varphi _i (0) = 0 \text{ and } \varphi _i \text{ continuous at } 0. \end{align*} }\]

Stacking these results and using ${ \varphi (h) = (\varphi _1 (h), \ldots, \varphi _m (h) ) ^T ,}$ we see

\[{ \begin{align*} &f(x + h) = f(x) + \begin{pmatrix} D _1 f _1 (x) &\cdots &D _n f _1 (x) \\ \vdots &\ddots &\vdots \\ D _1 f _m (x) &\cdots &D _n f _m (x) \end{pmatrix} h + \lVert h \rVert \varphi(h) \\ &\text{with } \varphi(0) = 0 \text{ and } \varphi \text{ continuous at } 0 . \end{align*} }\]

So the ${ m \times n }$ matrix with ${ (i, j) ^{\text{th}} }$ entry ${ D _j f _i (x) }$ works as the derivative of ${ f }$ at ${ x , }$ as needed.

Link to next part

comments powered by Disqus