Updated: 27/10/25
Ref: “Foundations of Applied Mathematics, Vol 2” by Humpherys, Jarvis, Evans.
Consider the optimization problem
\[{ {\begin{aligned} \text{minimize} \quad &\, f(x) \\ \text{subject to} \quad &\, g _1 (x) \leq 0, \\ &\, \quad \vdots \\ &\, g _m (x) \leq 0 \end{aligned}} }\]where ${ f ,}$ ${ g _i }$s are convex functions on ${ \mathbb{R} ^n . }$ (${ f }$ is allowed to take values in ${ \mathbb{R} \cup \lbrace +\infty \rbrace }$).
Suppose
\[{ g _1, \ldots, g _k \, \text{ are not affine} }\]and
\[{ g _{k + 1}, \ldots, g _m \, \text{ are affine} }\]with the affine inequalities appearing in pairs ${ \lbrace h _i \leq 0, - h _i \leq 0 \rbrace . }$
Consider the feasible set
\[{ \mathcal{F} = \lbrace x \in \mathbb{R} ^n : x \in \text{dom}(f), G(x) \preceq 0 \rbrace . }\]Note that ${ \mathcal{F} }$ is a convex set in ${ \mathbb{R} ^n . }$
Let ${ x ^{\ast} \in \mathcal{F} }$ be a minimizer with ${ f (x ^{\ast}) = p ^{\ast} . }$
The goal is to study ${ p ^{\ast} . }$
Consider the Lagrangian dual
\[{ \boxed{ \hat{f}(\mu) = \inf _{x \in \mathbb{R} ^n} (f(x) + \mu ^T G(x)) \in \mathbb{R} \cup \lbrace - \infty \rbrace } . }\]Note that ${ \hat{f} }$ is an infimum over affine functions in ${ \mu, }$ and hence is concave.
Note that if ${ \mu \succeq 0 , }$ we have
\[{ f(x ^{\ast}) + \mu ^T G(x ^{\ast}) \leq p ^{\ast} . }\]Hence if ${ \mu \succeq 0 , }$ we have
\[{ \hat{f}(\mu) \leq p ^{\ast} . }\]Hence
\[{ \boxed{ \sup _{\mu \succeq 0} \hat{f}(\mu) \leq p ^{\ast} } . }\]Q) Is the above bound an equality?
Equivalently,
Q) Is
\[{ \quad d ^{\ast} := \sup _{\mu \succeq 0} \hat{f}(\mu) = p ^{\ast} . }\]It turns out imposing a mild constraint ensures that the supremum ${ d ^{\ast} }$ is attained and is equal to ${ p ^{\ast} . }$
Suppose there is a point
\[{ {\begin{aligned} &\, x ^{'} \in \text{int}(\text{dom}(f)), \quad x ^{'} \in \mathcal{F}, \\ &\, g _j (x ^{'}) < 0 \, \, \text{ for each } g _j \text{ which is not affine.} \end{aligned}} }\]Then the supremum ${ d ^{\ast} }$ is attained and is equal to ${ p ^{\ast} . }$
Thm: Consider the optimization problem
\[{ {\begin{aligned} \text{minimize} \quad &\, f(x) \\ \text{subject to} \quad &\, g _1 (x) \leq 0, \\ &\, \quad \vdots \\ &\, g _m (x) \leq 0 \end{aligned}} }\]where ${ f ,}$ ${ g _i }$s are convex on ${ \mathbb{R} ^n . }$
Suppose
\[{ g _1, \ldots, g _k \, \text{ are not affine} }\]and
\[{ g _{k + 1}, \ldots, g _m \, \text{ are affine} }\]with the affine inequalities appearing in pairs ${ \lbrace h _i \leq 0, - h _i \leq 0 \rbrace . }$
Let ${ x ^{\ast} \in \mathcal{F} }$ be a minimizer with ${ f (x ^{\ast}) = p ^{\ast} . }$
Consider the Lagrangian dual
\[{ \hat{f}(\mu) = \inf _{x \in \mathbb{R} ^n} (f(x) + \mu ^T G(x)) \in \mathbb{R} \cup \lbrace - \infty \rbrace . }\]Suppose there is a point
\[{ {\begin{aligned} &\, x ^{'} \in \text{int}(\text{dom}(f)), \quad x ^{'} \in \mathcal{F}, \\ &\, g _j (x ^{'}) < 0 \, \, \text{ for each } g _j \text{ which is not affine.} \end{aligned}} }\]Then
\[{ \boxed{ d ^{\ast} := \sup _{\mu \succeq 0} \hat{f}(\mu) = p ^{\ast} } . }\]Pf: Note that
\[{ g _1 (x ^{'}), \ldots, g _k (x ^{'}) < 0 }\]and
\[{ g _{k + 1} (x ^{'}) = \ldots = g _m (x ^{'}) = 0 . }\]Consider
\[{ \tilde{G} = (g _1, \ldots, g _k) . }\]Consider
\[{ V = \lbrace (u, w) \in \mathbb{R} ^k \times \mathbb{R} : \exists x \quad \tilde{G}(x) \preceq u, f(x) \leq w \rbrace . }\]Note that
\[{ \boxed{ V = \lbrace (u, w) \in \mathbb{R} ^k \times \mathbb{R} : \exists x \quad (\tilde{G}(x), f(x)) \preceq (u,w) \rbrace } . }\]Note that ${ V }$ is a convex set.
Note that if ${ (u, w) \in V }$ and ${ (u ^{‘}, w ^{‘}) \succeq (u, w) , }$ then ${ (u ^{‘}, w ^{‘}) \in V . }$
Note that for ${ (\lambda , 0) \in \mathbb{R} ^k \times \mathbb{R} ^{m - k}, }$ the dual function
\[{ {\begin{aligned} &\, g(\lambda, 0) \\ = &\, \inf _{x \in \mathbb{R} ^n} (f(x) + \lambda ^T \tilde{G}(x)) \\ = &\, \inf _{(u, w) \in V} \lambda ^T u + w \\ = &\, \inf _{(u , w) \in V} (\lambda, 1) ^T (u , w) . \end{aligned}} }\]Hence
\[{ \boxed{ g(\lambda , 0) = \inf _{(u, w) \in V} (\lambda , 1) ^T (u, w) } . }\]Note that it suffices to show
\[{ \boxed{ \text{To show:} \quad (\mu, 0) \succeq 0 \, \, \text{ such that } \, \, g(\mu, 0) \geq p ^{\ast} } . }\]Note that ${ (0, p ^{\ast}) }$ is in the boundary of ${ V . }$
Hence it suffices to show
\[{ \text{To show:} \quad (\mu, 0) \succeq 0 \, \, \text{ such that } \, \, \inf _{(u, w) \in V} (\mu, 1) ^T (u, w) \geq (\mu, 1) ^T(0, p ^{\ast} ) . }\]Note that ${ (0, p ^{\ast}) }$ is in the boundary of ${ V . }$
Hence there exists a supporting hyperplane
\[{ h((u, w)) = \mu ^T u + \mu _0 w + b }\]of ${ \text{cl}(V) }$ at ${ (0, p ^{\ast}). }$
Note that WLOG the normal ${ (\mu, \mu _0) }$ is pointing inwards to ${ \text{cl}(V) . }$
Hence
\[{ \mu ^T u + \mu _0 w + b \geq \mu ^T 0 + \mu _0 p ^{\ast} + b }\]for all ${ (u, w) \in \text{cl}(V) . }$
Hence
\[{ \mu ^T u + \mu _0 w \geq \mu _0 p ^{\ast} }\]for all ${ (u, w) \in \text{cl}(V) . }$
Suppose
\[{ \text{Suppose:} \quad (\mu, \mu _0) \succeq 0, \quad \mu _0 > 0 . }\]Then
\[{ \left( \frac{\mu}{\mu _0} \right) ^T u + w \geq p ^{\ast} }\]for all ${ (u, w) \in \text{cl}(V) . }$
Hence
\[{ \left(\frac{\mu}{\mu _0}, 0 \right) \succeq 0, \quad g \left( \frac{\mu}{\mu _0} , 0\right) \geq p ^{\ast} }\]as needed.
Hence it suffices to show
\[{ \text{To show:} \quad (\mu, \mu _0) \succeq 0, \quad \mu _0 > 0 . }\]Note that
\[{ \mu ^T u + \mu _0 w \geq \mu _0 p ^{\ast} }\]for all ${ (u, w) \in \text{cl}(V) . }$
Note that if some component ${ \mu _i }$ of ${ \mu }$ were negative, we could increase ${ u _i }$ arbitrarily such that the above inequality is violated.
Hence
\[{ \mu \succeq 0 . }\]SImilarly
\[{ \mu _0 \geq 0 . }\]Hence
\[{ (\mu, \mu _0) \succeq 0 . }\]Suppose ${ \mu _0 = 0 . }$
Note that the supporting hyperplane inequality becomes
\[{ \mu ^T u \geq 0 }\]for all ${ (u, w) \in \text{cl}(V) . }$
Note that setting
\[{ u = (g _1 (x ^{'}), \ldots, g _k (x ^{'})) }\]gives a contradiction.
Hence
\[{ \mu _0 > 0 }\]as needed.
Hence
\[{ \left(\frac{\mu}{\mu _0}, 0 \right) \succeq 0, \quad g \left( \frac{\mu}{\mu _0} , 0\right) \geq p ^{\ast} }\]as needed.
Hence
\[{ d ^{\ast} := \sup _{\mu \succeq 0} \hat{f}(\mu) = p ^{\ast} }\]as needed. ${ \blacksquare }$