Consider the plane ${ \mathbb{R} ^2 . }$ Consider the origin ${ (0, 0) . }$
Consider the natural error generating process:
- The random error vector is ${ \mathcal{E} = (\varepsilon _1, \varepsilon _2) . }$
- The components ${ \varepsilon _1, \varepsilon _2 }$ are independent and identically distributed.
- The distribution of ${ \mathcal{E} }$ is rotationally symmetric.
Q) What is the distribution of the random error vector ${ \mathcal{E} }$?
Let ${ f(x, y) }$ be the density of ${ \mathcal{E} . }$
Let ${ f(x) }$ be the density of the components ${ \varepsilon _1 , \varepsilon _2 . }$
Note that by independence of components
\[{ f(x, y) = f(x) f(y) . }\]Note that by rotational symmetry of ${ f(x, y) }$
\[{ f(x, y) = g(x ^2 + y ^2) . }\]Hence
\[{ \boxed{f(x, y) = f(x) f(y) = g(x ^2 + y ^2) }. }\]Note that it suffices to find the expression of ${ g . }$
Note that
\[{ f(x) f(0) = g(x ^2) . }\]Note that
\[{ f(0) ^2 = g(0) . }\]Hence
\[{ f(x) = \frac{1}{\sqrt{g(0)}} g (x ^2) . }\]Hence
\[{ \frac{1}{\sqrt{g(0)}} g (x ^2) \frac{1}{\sqrt{g(0)}} g (y ^2) = g(x ^2 + y ^2) . }\]Hence
\[{ g(x ^2) g(y ^2) = g(0) g(x ^2 + y ^2) . }\]Hence
\[{ g(t _1) g(t _2) = g(0) g(t _1 + t _2) }\]for ${ t _1, t _2 > 0 . }$
Hence
\[{ g(t) = A e ^{kt} . }\]Hence ${ f(x, y) }$ is of the form
\[{ \boxed{ f(x, y) = A e ^{k(x ^2 + y ^2)} } . }\]Note that ${ k < 0 . }$
Hence ${ f(x, y) }$ is of the form
\[{ \boxed{f(x, y) = \frac{1}{2 \pi \sigma ^2} e ^{- \frac{x ^2 + y ^2}{2 \sigma ^2}} } . }\]We call this a Gaussian distribution.