Blog (mostly math)

Dual Cones

Ref:

  • “Convex Optimization” by Boyd, Vandenberghe.
  • “Convex Optimization” by Boyd. Lecture-2. Link to lecture: Lecture.

[Dual cones]

Note that cones induce inequalities. Link to Stackexchange post: Link.

Consider ${ \mathbb{R} ^n . }$ Let ${ K \subseteq \mathbb{R} ^n }$ be a cone.

Consider the dual space

\[{ (\mathbb{R} ^n)^{\ast} := \lbrace x ^T (\cdot) : x \in \mathbb{R} ^n \rbrace . }\]

Note that ${ (\mathbb{R} ^n) ^{\ast} }$ has the norm

\[{ \lVert x ^T (\cdot) \rVert := \sup \lbrace x ^T (y) : \lVert y \rVert = 1 \rbrace . }\]

Note that

\[{ \lVert x ^T (\cdot) \rVert = \lVert x \rVert . }\]

Q) What are all the elements of ${ (\mathbb{R} ^n) ^{\ast} }$ which respect ${ \preceq _K }$?

Equivalently

Q) What is

\[{ \lbrace \lambda ^T (\cdot) : x {\preceq _K} y \implies \lambda ^T (x) \leq \lambda ^T (y) \rbrace . }\]

Note that the set is

\[{ {\begin{aligned} &\, \lbrace \lambda ^T (\cdot) : x {\preceq _K} y \implies \lambda ^T (x) \leq \lambda ^T (y) \rbrace \\ = &\, \lbrace \lambda ^T (\cdot) : \lambda ^T (y - x) \geq 0 \text{ for all } y - x \in K \rbrace \\ = &\, \lbrace \lambda ^T (\cdot) : \lambda ^T z \geq 0 \text{ for all } z \in K \rbrace . \end{aligned}} }\]

We call

\[{ \boxed{ K ^{\ast} = \lbrace \lambda : \lambda ^T z \geq 0 \text{ for all } z \in K \rbrace } }\]

as the dual cone of ${ K . }$

Note that geometrically, ${ \lambda \in K ^{\ast} }$ means ${ (-\lambda) }$ is a normal vector of a supporting hyperplane of ${ K }$ at ${ 0 . }$

Thm: Consider ${ \mathbb{R} ^n . }$ Let ${ K \subseteq \mathbb{R} ^n }$ be a proper cone. Then

\[{ x {\preceq _K} y \iff \lambda ^T (x) \leq \lambda ^T (y) \, \, \text{ for all } \lambda \in K ^{\ast} . }\]

Pf: ${ \underline{\implies} }$ Note that it is true by definition of ${ K ^{\ast} . }$

${ \underline{\impliedby} }$ Suppose

\[{ \lambda ^T (y - x) \geq 0 \quad \text{ for all } \lambda \in K ^{\ast} . }\]

Hence

\[{ (y - x) \in K ^{\ast \ast} . }\]

Note that by the below theorem

\[{ K ^{\ast \ast} = K . }\]

Hence

\[{ (y - x) \in K }\]

as needed. ${ \blacksquare }$

[${ K ^{\ast \ast} = K }$]

Thm: Let ${ K \subseteq \mathbb{R} ^n }$ be a proper cone. Then

\[{ K ^{\ast \ast} = K . }\]

Pf: Note that ${ K }$ is the intersection of all homogeneous half spaces containing ${ K . }$

Hence

\[{ {\begin{aligned} &\, K \\ = &\, \bigcap _{\lambda \in K ^{\ast}} \lbrace x : (- \lambda) ^T x \leq 0 \rbrace \\ = &\, \bigcap _{\lambda \in K ^{\ast}} \lbrace x : \lambda ^T x \geq 0 \rbrace \\ = &\, \lbrace x : \lambda ^T x \geq 0 \text{ for all } \lambda \in K ^{\ast} \rbrace \\ = &\, K ^{\ast \ast} . \end{aligned}} }\]

Hence

\[{ K ^{\ast \ast} = K }\]

as needed. ${ \blacksquare }$

comments powered by Disqus